Reaction of 1,1-Dichloro-2-(chloromethyl)cyclopropane with Some Carbanions: A Simple Synthesis of 1,2-Disubstituted Methylenecyclopropanes

Andrzej Jończyk,* Irena Kmiotek-Skarżyńska and Tadeusz Zdrojewski
Department of Chemistry, Technical University (Politechnika), Koszykowa 75, 00-662 Warsaw, Poland

Abstract

The reaction of cyclopropane 1 with 2 -substituted phenylacetonitriles 2a-f carried out in the presence of solid sodium hydroxide and benzyltriethylammonium chloride (TEBAC) as a catalyst in dimethyl sulfoxide, afforded 1,2 -disubstituted methylenecyclopropanes $\mathbf{4 a}$-f. The chloride 1 reacted with phenylacetonitrile 2i to give the chain-substituted product $3 \mathbf{i}$, while the reaction of 1 with diphenylacetonitrile $\mathbf{2 h}$ gives a mixture of compounds $\mathbf{3 h}$ and $\mathbf{4 h}$. The latter reaction carried out in conc. aq. NaOH -cat. TEBAC resulted in the formation of only the chain-substituted product 3 h . The nitriles 2 that contain a chiral centre formed a mixture of diastereoisomers of 4.

Previously we have reported that the treatment of 1,1 -dichloro-2-chloromethylcyclopropane 1 with carbanions from 2-phenylpropionitrile and diphenylacetonitrile ${ }^{1}$ or heteroanions ${ }^{1,2}$ (e.g. aryl oxides, alkoxides) leads to a unique transformation to afford 1,2-(4) or 1,1-disubstituted methylenecyclopropanes 5 along with the conventional products 3. It has also been reported that the reaction of chloride 1 with some heteronucleophiles or sodium malonate gave products 3^{3} (Scheme 1).

$\mathrm{Nu}-\mathrm{H}=\mathrm{ArCH}(\mathrm{R})(\mathrm{CN})-\mathrm{H}, \mathrm{ArO}-\mathrm{H}, \mathrm{RO}-\mathrm{H}$
Scheme 1

Recently we have shown that a similar reactivity pattern is observed in the reactions of 1-bromo-2-(chloromethyl)cyclopropane with nucleophiles. ${ }^{4}$

Now, we report that the reaction of 1 with phenylacetonitriles substituted at C-2 (2a-f), carried out in the presence of powdered NaOH -cat. TEBAC in DMSO (System A), under mild conditions, is a convenient method for the preparation of the compounds 4a-f, usually in good yields (Scheme 2, Table 1).

$$
\mathbf{1}+\mathrm{Nu}-\mathrm{H} \xrightarrow[\text { system }]{\text { Base-solvent }} \mathbf{3} \text { and/or } \mathbf{4}
$$

Scheme 2

Preliminary experiments with the nitriles $\mathbf{2 d}$ and $\mathbf{2 h}$ used in slight excess (2:1 ca. 1.2) afforded the product 4d and a mixture of 3 h and 4 h , respectively, in rather low yields (Table 1, Entries 4, 8). We also observed that the chloride 1 was almost completely consumed to form a tarry material. Therefore, further reactions of 1 with 2 were carried out with an excess of $2(2: 1 c a .3)$.

Our data reveal that the kind of product formed (3 or 4) depends on the structure of the carbanions generated from 2. Carbanions formed by deprotonation of $\mathrm{C}-\mathrm{H}$ acids possessing a reactive methylene group- $-2 i$ in system A or $2 j$ in system C (solid potassium carbonate-DMF)-afforded chain-substituted products 3 i and $\mathbf{3 j}$, respectively. In the case of $\mathbf{2 h}$, the structure of the products was dependent on the base-solvent conditions: in system A both $\mathbf{3 h}$ and $\mathbf{4 h}$ were formed, while under phase transfer conditions (PTC) ${ }^{5}$ in system D (50% aq.
sodium hydroxide, TEBAC as catalyst), only product 3h was isolated in a particularly low yield, accompanied by a significant amount of tarry material.

The reaction of 1 with amino nitrile $2 f$ using system A, led to the formation of the expected product $4 f$ which was fully characterized and then cleaved by $\mathrm{CuSO}_{4}-\mathrm{aq} . \mathrm{EtOH}$ to afford diketone 4 i . On the other hand, the reaction of 1 with 2 g did not give the corresponding methylenecyclopropane $\mathbf{4 h}$ since $\mathbf{2 g}{ }^{-}$ was quickly oxidized to N, N-dimethylbenzamide. Indeed, such a base-mediated transformation of 2-(dialkylamino)phenylacetonitriles has already been described. ${ }^{6}$ Therefore, the reaction of 1 with 2 g was performed in the presence of NaH in DMF (system B), and the crude 4 g was transformed into $\mathbf{4 i}$ (Scheme 3). The reactions of 1 with amino nitriles $\mathbf{2 f}$ and $\mathbf{2 g}$

Scheme 3 Reagents and conditions: i, $\mathrm{NaH}-\mathrm{DMF} ; \mathrm{ii}, \mathrm{CuSO}_{4}, \mathrm{EtOH}-$ $\mathrm{H}_{2} \mathrm{O}$
proceeded with a relatively high rate in comparison with the other processes listed in Table 1.

The products 4 may exist as trans and cis isomers (with respect to the orientation of the two Nu groups on the cyclopropane ring). Furthermore, due to the four chiral centres, the presence of three diasteroisomers for each of trans-4a-f and cis-4a-f is expected. The statistical distribution of the diastereoisomers is $2: 1: 1$, the major one for trans-4 has R and S configurations of the Nu centres, while in cis-4, both the Nu centres have either R or S configuration. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Tables 2 and 3) allowed us to elucidate the structures of the methylenecyclopropanes 4 . The spectral data indicate that the isolated products 4 never consisted of more than three diastereoisomers.
To assign the orientation of the substituents on the cyclopropane ring, a decoupling experiment (irradiation of the vinyl protons) on the predominant diastereoisomer of 4a, 4d (as a mixture of diastereoisomers) and $\mathbf{4 f}$ was performed. It showed a simple AB system of cyclopropane protons in ${ }^{1} \mathrm{H}$ NMR spectra, and $J 4.72, J 4.74$ and $J 4.36 \mathrm{~Hz}$, respectively for $\mathbf{4 a}, 4 \mathrm{~d}$ and 4 f, hence found are in fairly good agreement with J values for trans isomers of some other 1,2-disubstituted methylenecyclopropanes ($J_{\text {trans }} 4.0-4.6, J_{\text {cis }} 9.6 \mathrm{~Hz}$). ${ }^{7}$ Taking into account

Table 1 Summary of the reaction conditions and products

Entry	$\mathrm{Nu}-\mathrm{H}$	Reaction conditions ${ }^{\text {a }}$			Method of isolation ${ }^{c}$	Products, yield (\%)	
		Base-solvent system ${ }^{b}$		t / h			
			$T /{ }^{\circ} \mathrm{C}$			3	4
1	2a, $\mathrm{PhC}(\mathrm{Me})(\mathrm{CN})-\mathrm{H}$	A	35	3	1		4a, 82
2	2b, $\mathrm{PhC}(\mathrm{Et})(\mathrm{CN})-\mathrm{H}$	A	20-25	5	1		4b, 81
3	2c, $\mathrm{PhC}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)(\mathrm{CN})-\mathrm{H}$	A	55-60	8	2		4c, 48
4	2d, $\mathrm{PhC}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)(\mathrm{CN})-\mathrm{H}$	A	55-60	10	3		4d, ${ }^{4} 59$
5	2e, (4-C554 ${ }^{\text {H }}$) $\mathrm{CPh}(\mathrm{CN})-\mathrm{H}$	A	54-58	10	1		4e, 24
6	2f, $\mathrm{PhC}\left[\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right](\mathrm{CN})-\mathrm{H}$	A	20-25	0.25	3		4f, 68
7	2g, $\mathrm{PhC}\left(\mathrm{NMe}_{2}\right)(\mathrm{CN})-\mathrm{H}$	B	20-25	0.25	4		4g, (32) ${ }^{\text {e }}$
8	2h, $\mathrm{Ph}_{2} \mathrm{C}(\mathrm{CN})-\mathrm{H}$	A	40-45	5	3	3h, ${ }^{5} 8$	4h, ${ }^{\text {f }} 66$
9	2i, $\mathrm{PhCH}(\mathrm{CN})-\mathrm{H}$	A	20-25	1	5	3i, 51	
10	$2 \mathrm{j},\left(\mathrm{MeO}_{2} \mathrm{C}\right)_{2} \mathrm{C}(\mathrm{H})-\mathrm{H}$	C	80	6	5	3j, 16	

${ }^{a}$ If not otherwise stated, the reactions were carried out with $2: 1(\mathrm{~mol} / \mathrm{mol}) c a .3 .{ }^{b} \mathrm{~A}$: solid $\mathrm{NaOH}-\mathrm{DMSO}-\mathrm{cat}$. TEBAC; B: NaH-DMF; C: solid $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{PhH}-\mathrm{cat}$. TEBAC. ${ }^{c}$ 1: excess of 2 was removed under reduced pressure, the product was vacuum distilled on Kugelrohr, and crystallized; 2: the product was isolated by CC, and vacuum distilled on Kugelrohr; 3: the product was isolated by crystallization; for isolation of $\mathbf{3 h}$ and $\mathbf{4 h}$, see Experimental section; 4: the product was isolated by CC then crystallized; 5: the product was isolated by vacuum distillation. ${ }^{d}$ With $\mathbf{2 d}: 1$ (mol/mol) ca. $1.2\left(55-60^{\circ} \mathrm{C}, 5 \mathrm{~h}\right)$, the yield of 4 d was $17 \% .^{e}$ Pure $\mathbf{4 g}$ was not isolated; this is the yield of diketone $4 \mathrm{i} .{ }^{f}$ With $\mathbf{2 h}: \mathbf{1}(\mathrm{mol} / \mathrm{mol}) c a .1 .2\left(55-60{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}\right)$, the yields of 3 h and 4 h were 5 and 40%, respectively.

Table $2{ }^{1} \mathrm{H}$ NMR spectra $\left(\delta_{\mathrm{H}}, \mathrm{CDCl}_{3}, J / \mathrm{Hz}\right.$) of compounds 4

${ }^{a}$ Individual signals not assigned to the corresponding isomers. ${ }^{b}$ The signals coincided with the signals of diastereoisomer I.
these data and the fact that the signals of only one geometrical isomer are present in the NMR spectra of the other products 4, it is reasonable to postulate that compounds 4 have a trans structure.
We did not ascribe the R or S configurations of the carbon centres of a particular diastereoisomer on the basis of NMR
spectra but for clarity the trans diastereoisomer with R and S configurations of the two quaternary carbon centres of Nu in 4 (see Scheme 2 and Table 1) was designated as I, and the diastereoisomer with both R (or S) and both S (or R) configurations as II and III, respectively. The spectra of the products 4 with different ratios of the isomers allowed us to
Table $3{ }^{13} \mathrm{C}$ NMR spectra $\left(\delta_{\mathrm{C}}, \mathrm{CDCl}_{3}\right)$ of compounds 4

	Diastereoisomer	Cyclopropane CH	$\mathrm{C}=\mathrm{CH}_{2}$	C= CH_{2}	$-\underset{\mid}{\stackrel{\mid}{\mathrm{C}}-\mathrm{in} \mathrm{Nu}}$	$\mathrm{C}=\mathrm{N}$	$\begin{aligned} & \mathrm{C} \text { in } \mathrm{R} \\ & (\mathrm{R}-\mathrm{C}-\mathrm{Ph}) \end{aligned}$	$\stackrel{\mathrm{C}}{\mathrm{C}}=\text { in } \mathrm{Ph}$	C-H in Ph
4a	I	25.65, 25.95	109.37	130.56	43.08, 43.17	121.09121 .26	28.76, $28.80\left(\mathrm{CH}_{3}\right)$	139.25, 139.68	$\begin{aligned} & 125.41,125.60,128.17, \\ & 128.29,128.91,129.07 \end{aligned}$
	II + III	25.90, 26.09	109.36, 109.46	130.07, 130.62	42.87, 43.02	121.13, 121.41	29.17, $29.29\left(\mathrm{CH}_{3}\right)$	138.76, 138.84	$125.41, \quad 125.74, \quad 128.05$ 128.26, 128.80, 128.91
4b	$\mathrm{I}+\mathrm{II}$	27.50, 28.66, 29.68	109.17	129.65, 130.70	49.73, 50.52	$\begin{aligned} & 119.67,119.98, \\ & 120.37 \end{aligned}$	$\begin{aligned} & 9.17, \quad 9.65, \quad 9.75\left(\mathrm{CH}_{3}\right) ; \\ & 32.60,32.80,33.00\left(\mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & 136.70,137.39, \\ & 138.02 \end{aligned}$	$\begin{array}{lll} 125.91, & 126.12, & 126.34, \\ 127.99, & 128.11, & 128.26 \\ 128.83, & 129.11 \end{array}$
	III	28.15	109.42	131.47	50.24	119.05	$9.72\left(\mathrm{CH}_{3}\right), 35.54\left(\mathrm{CH}_{2}\right)$	137.25	$\begin{aligned} & 125.64,127.77,128.66, \\ & 129.00 \end{aligned}$
4 c	I-III	$\begin{aligned} & \text { 26.56, 27.52, } \\ & 27.71,29.01 \end{aligned}$	$\begin{aligned} & \text { 109.32, 109.58, } \\ & 109.99 \end{aligned}$	$\begin{aligned} & \text { 129.17, } \\ & 130.06, \\ & 130.68 \end{aligned}$	$\begin{aligned} & 43.63,44.01, \\ & 44.28 \end{aligned}$	$\begin{aligned} & 119.05,119.06, \\ & 119.46,119.83 \end{aligned}$	$\begin{aligned} & 48.47, \\ & \left(\mathrm{CH}_{2}\right) ; \quad 109.56, \\ & \hline 10.32, \quad 109.58, \end{aligned}$	$\begin{aligned} & \text { 136.31, 136.77, } \\ & \text { 136.87, } 137.55 \end{aligned}$	125.53, 125.80, 126.03, 126.22, 127.70, 127.88, 127.99, 128.18, 128.43, $128.55,128.86$
							$\begin{aligned} & \left(=\mathrm{CH}_{2}\right) ; 130.45,130.88, \\ & 131.08(=\mathrm{CH}) \end{aligned}$		
4d	I	26.06, 28.88	109.38	130.37	50.56, 51.60	119.12, 119.70	46.56, $47.29\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$	$\begin{aligned} & 133.91,134.46 \\ & 136.88,138.61 \end{aligned}$	$\begin{array}{lll} 126.30, & 126.73, & 127.20, \\ 127.47, & 128.04, & 128.48, \\ 128.58, & 129.09, & 130.15 \\ 130.45 & \end{array}$
	III	28.09	a	129.42	a	119.94	$46.68\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$	137.19	a
4 e	I-III	$\begin{aligned} & 26.91,27.10,27.31, \\ & 27.50 \end{aligned}$	$\begin{aligned} & \text { 109.78, 110.07, } \\ & 110.37 \end{aligned}$	$\begin{aligned} & 130.44, \\ & 130.51 \end{aligned}$	$\begin{aligned} & 55.81,55.95, \\ & 56.02 \end{aligned}$	119.32	136.80 , 136.90, 137.07 ($\beta-$ CH); 149.30, 149.48, 149.52, $149.55(\alpha-\mathrm{CH}) ; 157.75$, 157.81, 157.95, 158.04 (-Cin pyridyl)	$\begin{aligned} & 138.40,138.46, \\ & 138.78,138.91 \end{aligned}$	121.20-128.84
48	I	25.83, 30.36	110.30	129.13	72.78,73.39	113.76, 113.85	$\begin{aligned} & 48.24,48.86,\left(\mathrm{NCH}_{2}\right), 66.61, \\ & 66.82\left(\mathrm{OCH}_{2}\right) \end{aligned}$	137.41, 137.71	$\begin{aligned} & 125.76, \quad 126.47,126.70, \\ & 128.85,129.53 \end{aligned}$
	II	28.54	110.74	125.43	71.14	115.53	$\begin{array}{ll} 48.93 \\ \left(\mathrm{OCH}_{2}\right) \end{array}\left(\mathrm{NCH}_{2}\right) ; \quad 66.74$	135.70	126.59, 128.73, 129.16
	III	25.82	110.24	131.88	73.39	114.01	$\begin{aligned} & 48.86\left(\mathrm{NCH}_{2}\right) ; 66.81 \\ & \left(\mathrm{OCH}_{2}\right) \end{aligned}$	136.20	125.75, 128.86, 128.99

${ }^{a}$ Due to small amount of III, the signals were not ascribed.
assign individual resonance signals for most of the diastereoisomers I-III of 4 (Tables 2 and 3). The crude products were purified before NMR spectra were measured to remove the tarry material. We cannot therefore reject the possibility that some of the products 4 had been lost and the ratio of diastereoisomers obtained changed. Some products 4 showed an almost statistical distribution of diastereoisomers I-III (ratio of $c a .2: 1: 1$ determined by ${ }^{1} \mathrm{H}$ NMR), but in all cases diastereoisomer I prevailed, so we were able to isolate I-4a and $\mathrm{I}-4 \mathrm{f}$ in pure form.
Data from ${ }^{1} \mathrm{H}$ NMR as well as ${ }^{13} \mathrm{C}$ NMR spectra allowed us to eliminate an alternative 1,1-disubstituted structure 5 or the structure 6 (which may result from trimethylenemethane rearrangement ${ }^{8}$) for the products of the reaction of 1 with 2 (Scheme 4).

It seems reasonable to assume that the products $\mathbf{3}$ are formed by simple nucleophilic substitution of a chlorine atom in the side chain of 1, while methylenecyclopropanes 4 are formed via subsequent elimination-addition reactions. Such a mechanistic pathway has been supported experimentally for the reaction of 1 with phenolate anion, leading to $5(\mathrm{Nu}=\mathrm{PhO})^{1}($ Scheme 1$)$. Location of the nucleophile at different carbon atoms in 4 serves as further support of this mechanism (Scheme 5).

Scheme 5
Methylenecyclopropenes have already been suggested as reactive intermediates in the reactions of nucleophiles with some 1-halogeno- and 1,1-dihalogeno-2-alkylidenecyclopropanes. ${ }^{9}$
To summarize, we have demonstrated that synthetically attractive methylenecyclopropane derivatives $\mathbf{4}$ can be simply synthesized from easily available substrates.

Experimental

M.p.s (recorded with a capillary tube apparatus) and b.p.s are uncorrected. NMR spectra were recorded on a BrukerSpectrospin spectrometer (${ }^{1} \mathrm{H} 100 \mathrm{MHz}$ and ${ }^{13} \mathrm{C}$). Solutions in deuteriochloroform with tetramethylsilane as the internal standard were used. J Values are given in Hz . Microanalyses
were performed on a Perkin-Elmer 240 CHN analyser. Column chromatography (CC) was carried out on Macherey Nagel silica gel 60 ($70-270 \mathrm{mesh}$) with hexane-ethyl acetate as eluent; thin layer chromatography (TLC) on Merck precoated plates (silica gel $60 \mathrm{~F}_{254}, 0.2 \mathrm{~mm}$). Dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) were distilled before use, sodium hydroxide was ground in a ball mill.

The following compounds were prepared by literature procedures: 1,1-dichloro-2-chloromethylcyclopropane 1 (52%), b.p. $58-60^{\circ} \mathrm{C} / 15 \mathrm{mmHg}$ (lit., ${ }^{10}$ b.p. $57^{\circ} \mathrm{C} / 19 \mathrm{mmHg}$); 2phenylpropionitrile $2 \mathrm{a}\left(53 \%\right.$), b.p. $110-112^{\circ} \mathrm{C} / 11 \mathrm{mmHg}$ (lit., ${ }^{11}$ b.p. $\left.112-114^{\circ} \mathrm{C} / 13 \mathrm{mmHg}\right)$; 2-phenylbutyronitrile $2 \mathrm{~b}(61 \%)$, b.p. $114-116^{\circ} \mathrm{C} / 14 \mathrm{mmHg}$ (lit.,11 b.p. $109-111^{\circ} \mathrm{C} \mathrm{mmHg}$); 2-phenylpent-4-enenitrile 2c (58%), b.p. $132-134^{\circ} \mathrm{C} / 14 \mathrm{mmHg}$ (lit., ${ }^{11}$ b.p. $133-135^{\circ} \mathrm{C} / 14 \mathrm{mmHg}$); 2,3-diphenylpropionitrile 2 d (40%), m.p. $87-89^{\circ} \mathrm{C}$ (lit., ${ }^{12}$ m.p. $87^{\circ} \mathrm{C}$); 2-(4-pyridyl)-2phenylacetonitrile $2 \mathrm{e}\left(46 \%\right.$), m.p. $74-76^{\circ} \mathrm{C}$ (lit. ${ }^{13}$ m.p. $75-$ $76.5^{\circ} \mathrm{C}$); 2-(morpholin-4-yl)-2-phenylacetonitrile $2 f(85 \%)$, m.p. $68-69^{\circ} \mathrm{C}$ (lit., ${ }^{14} \mathrm{~m} . \mathrm{p} .69-70^{\circ} \mathrm{C}$); 2-(N, N-dimethylamino)-2phenylacetonitrile $2 \mathrm{~g}\left(92 \%\right.$), b.p. $59-60^{\circ} \mathrm{C} / 0.3 \mathrm{mmHg}$ (lit., ${ }^{15}$ b.p. $78-79^{\circ} \mathrm{C} / 1.1 \mathrm{mmHg}$). Commercial benzyltriethylammonium chloride (TEBAC) and C-H acids $2 \mathrm{~h}-\mathrm{j}$ were used, the latter were crystallized or distilled before use. Sodium hydride KochLight Lab. (50% dispersion in oil; washed with benzene before use) was used.

A typical work-up consists of the extraction of the reaction mixture with chloroform ($3 \times c a .80 \mathrm{~cm}^{3}$ for $15-60 \mathrm{mmol}$-scale reaction), washing the combined organic extracts with water, drying $\left(\mathrm{MgSO}_{4}\right)$ and then evaporation of the solvent under reduced pressure.

General Procedure for the Synthesis of 1,2-Disubstituted Methylenecyclopropanes 4a-f.-A mixture of DMSO $\left(10 \mathrm{~cm}^{3}\right)$, powdered sodium hydroxide ($2.4 \mathrm{~g}, 60 \mathrm{mmol}$), TEBAC (0.1 g , $0.44 \mathrm{mmol})$ and the nitrile 2a-f (30 mmol) was stirred until the generation of heat ceased. Then a solution of $1(1.59 \mathrm{~g}, 10 \mathrm{mmol})$ in DMSO ($10 \mathrm{~cm}^{3}$) was added and the reaction was stirred at the temperature and for the time indicated in Table 1. The mixture was poured into water, worked up and then the product was isolated by one of the methods 1-5 (Table 1).

1,2-Bis(1-cyano-1-phenylethyl)-3-methylenecyclopropane 4a. An oil; b.p. $185^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$ (Kugelrohr), mixture of diastereoisomers I, II and III in the ratio of 3.7:2:1 (Found: C, 84.8; $\mathrm{H}, 6.3 ; \mathrm{N}, 8.7 . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2}$ requires $\mathrm{C}, 84.6 ; \mathrm{H}, 6.45 ; \mathrm{N}, 9.0 \%$). Crystallization of this oil from ethanol gave diastereoisomer I (46%), m.p. $95-96^{\circ} \mathrm{C}$ (Found: C, 84.5; H, 6.45; N, 9.1). Attempted separation of II and III from the filtrate after crystallization of I, failed.

1,2-Bis(1-cyano-1-phenylpropyl)-3-methylenecyclopropane

 4b. Colourless oil; b.p. $145^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$ (Kugelrohr), mixture of diastereoisomers I, II and III (2.8:1.4:1) (Found: C, 84.7; H, 7.1; $\mathrm{N}, 8.05 . \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2}$ requires C, 84.6; H, 7.1; $\mathrm{N}, 8.25 \%$). Crystallization of this oil from ethanol afforded a mixture of isomers I and II (2:1), 63%, m.p. $86-87^{\circ} \mathrm{C}$ (Found: C, $84.6 ; \mathrm{H}$, 7.1; N, 8.2).1,2-Bis(1-cyano-1-phenylbut-3-enyl)-3-methylenecyclopropane 4 c . An oil; b.p. $210^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$ (Kugelrohr), mixture of diastereoisomers I, II and III ($2: 1: 1$) (Found: C, 85.45; H, 6.5; $\mathrm{N}, 7.4 . \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2}$ requires $\mathrm{C}, 85.7 ; \mathrm{H}, 6.6 ; \mathrm{N}, 7.7 \%$).

1,2-Bis(1-cyano-1,2-diphenylethyl)-3-methylenecyclopropane 4d. Colourless crystals; m.p. $147-148^{\circ} \mathrm{C}$ (from ethanol), mixture of diastereoisomers I, II and III (10:1:1.2) (Found: C, 88.0; H, 5.9; N, 6.2. $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2}$ requires C, 87.9; H, 6.1; N , 6.05%).

1,2-Bis[cyano(4-pyridyl)phenylmethyl] methylenecyclopropane 4 e. An oil; b.p. $180-210^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$ (Kugelrohr). After crystallization from ethanol a mixture of diastereoisomers I, II and III $(2: 1: 1)$ in the form of colourless crystals (24%), m.p.
$155-157^{\circ} \mathrm{C}$ was obtained (Found: C, 81.95; H, 4.9; N, 13.2. $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{4}$ requires C, 82.2; H, $5.1 ; \mathrm{N}, 12.8 \%$).

1,2-Bis[cyanomorpholin-4-ylphenylmethyl]-3-methylenecyclopropane 4f. Colourless crystals; m.p. $152-215^{\circ} \mathrm{C}$ (from hexane), mixture of diastereoisomers I, II and III (1.6:1.2:1). Fractional crystallization from hexane-cyclohexane allowed the isolation of pure isomers I and II. Isomer I, m.p. $205-206{ }^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 73.8; H, 6.7; N, 12.5. $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.0 ; \mathrm{H}, 6.65 ; \mathrm{N}, 12.3 \%$). Isomer II, m.p. $160-162^{\circ} \mathrm{C}$ (from hexane-cyclohexane) (Found C, 73.9; H, 6.7; N, 12.35\%).

1,2-Dibenzoyl-3-methylenecyclopropane 4i.-A mixture of DMF ($10 \mathrm{~cm}^{3}$), $\mathrm{NaH}(0.36 \mathrm{~g}, 15 \mathrm{mmol}$) and amino nitrile $\mathbf{2 g}$ $(2.40 \mathrm{~g}, 15 \mathrm{mmol})$ was stirred until the generation of heat ceased. Then a solution of $1(0.80 \mathrm{~g}, 5 \mathrm{mmol})$ in DMF $\left(2 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture was stirred at $20-25^{\circ} \mathrm{C}$ for 0.25 h and then diluted with water. The mixture was worked up, and the residue obtained was refluxed with $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.25 \mathrm{~g}, 5$ mmol) in ethanol ($10 \mathrm{~cm}^{3}$) and water ($15 \mathrm{~cm}^{3}$) for 1 h . The solvent was evaporated off and the residue was diluted with water ($50 \mathrm{~cm}^{3}$) and extracted with chloroform ($3 \times 50 \mathrm{~cm}^{3}$). The combined organic phases were washed with 10% aq. hydrochloric acid, then with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and then concentrated. The product was isolated by CC to give the title compound $4 \mathrm{i}\left(0.42 \mathrm{~g}, 32 \%\right.$), m.p. $59-60^{\circ} \mathrm{C}$ (from MeOH) (Found: $\mathrm{C}, 82.2 ; \mathrm{H}, 5.5 . \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 82.4 ; \mathrm{H}, 5.4 \%$); δ_{H} 4.15 ($2 \mathrm{H}, \mathrm{t}, J 2.45$, cyclopropane CH), 5.58 ($2 \mathrm{H}, \mathrm{t}, J 2.46$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right)$ and $7.49-7.63$ and $8.06-8.15(10 \mathrm{H}, 2 \mathrm{~m}, 2 \times \mathrm{Ar}-\mathrm{H})$; $\delta_{\mathrm{C}} 30.59$ (cyclopropane CH), $103.83\left(\mathrm{C}=\mathrm{CH}_{2}\right), 128.69,128.78$ and $133.57(\mathrm{ArCH}), 133.14\left(\mathrm{C}=\mathrm{CH}_{2}\right), 136.73(\mathrm{Ar} \mathrm{C-C=O})$ and 193.92 (C=O).

1,1-Dichloro-2-(2-cyano-2,2-diphenylethyl)cyclopropane 3h and 1,2-Bis(cyanodiphenylmethyl)-3-methylenecyclopropane $\mathbf{4 h}$. -A mixture of DMSO $\left(10 \mathrm{~cm}^{3}\right)$, powdered sodium hydroxide $(2.4 \mathrm{~g}, 60 \mathrm{mmol})$, TEBAC $(0.1 \mathrm{~g}, 0.44 \mathrm{mmol})$ and nitrile $2 \mathrm{~h}(5.8 \mathrm{~g}$, 30 mmol) was stirred until generation of heat ceased. Then a solution of $1(1.59 \mathrm{~g}, 10 \mathrm{mmol})$ in DMSO $\left(10 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture was stirred at $40-45^{\circ} \mathrm{C}$ for 5 h . The mixture was poured into water, worked up and then the residue was crystallized from MeOH to give the title compound $\mathbf{4 h}$ (2.88 g, 66%), m.p. $154-155^{\circ} \mathrm{C}$ (Found: C, 87.85 ; H, 5.3; N, 6.4. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{2}$ requires C, $88.05 ; \mathrm{H}, 5.5 ; \mathrm{N}, 6.4 \%$); $\delta_{\mathrm{H}} 2.61\left(2 \mathrm{H}, \mathrm{t},{ }^{4} \mathrm{~J}\right.$ 2.16, cyclopropane CH$) 5.78\left(2 \mathrm{H}, \mathrm{t}, J 2.20, \mathrm{C}=\mathrm{CH}_{2}\right)$ and 7.18 and $7.34(20 \mathrm{H}, 2 \mathrm{brs}, 4 \times \mathrm{Ar}-\mathrm{H})$; $\delta_{\mathrm{C}} 27.82$ (cyclopropane- CH), $53.36(-\mathrm{C}-), 110.51\left(\mathrm{C}=\mathrm{CH}_{2}\right), 119.67(\mathrm{C} \equiv \mathrm{N}), 126.88,127.50$, 128.09, 128.28 and $128.84(\mathrm{Ar}-\mathrm{CH}), 130.07\left(C=\mathrm{CH}_{2}\right)$ and 139.45 and $139.53(\mathrm{Ar} C)$.

The filtrate remaining after the crystallization of 4 h was diluted with chloroform ($c a .50 \mathrm{~cm}^{3}$), washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and then distilled at $220^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$ (Kugelrohr) to afford the title compound $\mathbf{3 h}(0.25 \mathrm{~g}, 8 \%$) as an oil (Found: C, 68.55; H, 4.65; N, 4.1; Cl, 22.7. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}$ requires $\mathrm{C}, 68.35 ; \mathrm{H}, 4.8 ; \mathrm{Cl}, 22.4 ; \mathrm{N}, 4.4 \%$); $\delta_{\mathrm{H}} 1.10-1.71(3 \mathrm{H}, \mathrm{m}$, cyclopropane CH and CH_{2}), 2.22-3.10 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and 7.35-7.36 ($10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}$).

1,1-Dichloro-2-(2-cyano-2,2-diphenylethyl)cyclopropane

 3h.-A mixture of 50% aq. sodium hydroxide ($25 \mathrm{~cm}^{3}$), TEBAC $(0.1 \mathrm{~g}, 0.44 \mathrm{mmol})$, the nitrile $2 \mathrm{~h}(11.6 \mathrm{~g}, 60 \mathrm{mmol})$ and chloride $1(3.2 \mathrm{~g}, 20 \mathrm{mmol})$ was stirred under argon. After the generation of heat had ceased the reaction was stirred at $60^{\circ} \mathrm{C}$ for 0.25 h ($5 \mathrm{~cm}^{3}$ of benzene was added to help the stirring of the semisolid mixture) and then at $40^{\circ} \mathrm{C}$ for 1 h . The mixture was diluted with water, worked up and after two distillations at b.p. $205^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$ (Kugelrohr) the product $3 \mathrm{~h}(0.54 \mathrm{~g}, 8.5 \%$) was obtained as an oil.1,1-Dichloro-2-(2-cyano-2-phenylethyl)cyclopropane 3i.-A mixture of DMSO $\left(10 \mathrm{~cm}^{3}\right)$, powdered $\mathrm{NaOH}(2.4 \mathrm{~g}, 60 \mathrm{mmol})$, TEBAC ($0.1 \mathrm{~g}, 0.44 \mathrm{mmol}$) and the nitrile $2 \mathrm{i}(3.51 \mathrm{~g}, 30 \mathrm{mmol})$ was stirred until the generation of heat ceased. Then a solution of chloride $1(1.59 \mathrm{~g}, 10 \mathrm{mmol})$ in DMSO $\left(10 \mathrm{~cm}^{3}\right)$ was added and the reaction was stirred at $20-25^{\circ} \mathrm{C}$ for 1 h . The mixture was poured into water, worked up and then the residue was distilled (b.p. $104^{\circ} \mathrm{C} / 0.01 \mathrm{mmHg}$) to give the title compound 3 i ($1.22 \mathrm{~g}, 51 \%$) as an oil (Found: C, 60.45; H, 4.6; Cl, 29.15; N, 5.85. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}$ requires $\left.\mathrm{C}, 60.0 ; \mathrm{H}, 4.6 ; \mathrm{Cl}, 29.55 ; \mathrm{N}, 5.85 \%\right) ; \delta_{\mathrm{H}}$ 1.13-1.88 ($3 \mathrm{H}, \mathrm{m}$, cyclopropane CH and CH_{2}), 1.95-2.37 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$) , 3.90-4.09 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCN}$) and 7.24-7.48 ($5 \mathrm{H}, \mathrm{m}$, Ar-H).

1,1-Dichloro-2-(2,2-bismethoxycarbonylethyl)cyclopropane 3 j .-A mixture of powdered potassium carbonate ($6.21 \mathrm{~g}, 45$ mmol), benzene ($50 \mathrm{~cm}^{3}$), TEBAC ($0.15 \mathrm{~g}, 0.66 \mathrm{mmol}$), ester 2 j $(1.98 \mathrm{~g}, 15 \mathrm{mmol})$ and chloride $1(0.80 \mathrm{~g}, 5 \mathrm{mmol})$ was stirred under reflux (ca. $80^{\circ} \mathrm{C}$) for 6 h . The mixture was filtered and the solid was washed with benzene. The combined filtrate and washings were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and then concentrated. The residue was distilled (b.p. $130^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$) to give the title compound $3 \mathrm{j}(0.2 \mathrm{~g}, 16 \%$) as an oil (Found: $\mathrm{C}, 42.65 ; \mathrm{H}, 4.45 ; \mathrm{Cl}, 27.6 . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 42.45 ; \mathrm{H}$, $4.75 ; \mathrm{Cl}, 27.8 \%$); δ_{H} 1.13-1.27 ($1 \mathrm{H}, \mathrm{m}$, cyclopropane CH), 1.52-1.74 ($2 \mathrm{H}, \mathrm{m}$, cyclopropane CH_{2}), $2.09-2.24(2 \mathrm{H}, \mathrm{m}$, CH_{2}), 3.45-3.71 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$) and 3.77 and 3.78 (total $6 \mathrm{H}, 2$ s, $2 \times \mathrm{CH}_{3}$).

Acknowledgements

Financial support of this work by the State Committee for Scientific Research, Warsaw (Grant No. 206409101) is gratefully acknowledged.

References

1 A. Jończyk, D. Dąbrowski and W. Woźniak, Tetrahedron Lett., 1983, 24, 1065.
2 A. Jończyk and I. Kmiotek-Skarżyńska, Synthesis, 1992, 985.
3 K. Steinbeck, Liebigs Ann. Chem., 1979, 920.
4 A. Jończyk and I. Kmiotek-Skarżyńska, J. Org. Chem., 1989, 54, 2756.

5 E. V. Dehmlow and S. S. Dehmlow, Phase Transfer Catalysis, Verlag Chemie, Weinheim, 3rd edn. 1993; M. Mạkosza and M. Fedoryński, in Advances in Catalysis, eds. D. D. Eley, H. Pines and P. B. Weisz, Academic Press, London, 1987, vol. 35, p. 375.
6 F. Yuste, A. E. Origel and L. J. Brena, Synthesis, 1983, 109.
7 J.-L. Pierre, M. Vidal, P. Arnaud and C. Gey, Bull. Soc. Chim. Fr., 1970, 1544.
8 B. M. Trost, Angew. Chem., 1986, 98, 1.
9 W. E. Billups, A. J. Blakeney, N. A. Rao and J. D. Buynak, Tetrahedron, 1981, 37, 3215.
10 T. V. Mandelshtam, E. M. Kharicheva, N. N. Labeish and R. R. Kostikov, Zh. Org. Khim., 1980, 16, 2513.

11 A. Jończyk, M. Ludwikow and M. Mạkosza, Org. Prep. Proced. Int., 1979, 11, 275.
12 M. Mạkosza and B. Serafinowa, Rocz. Chem., 1965, 39, 1401 (Chem. Abstr., 1966, 64, 17474g).
13 M. P. Sammes, Ch. M. Lee and A. R. Katritzky, J. Chem. Soc., Perkin Trans. 1, 1981, 2476.
14 D. J. Bennet, G. W. Kirby and V. A. Moss. J. Chem. Soc., C, 1970, 2049.
15 C. R. Hauser, H. M. Taylor and T. G. Ledford, J. Am. Chem. Soc., 1960, 82, 1786.

Paper 3/07302E
Received 10th December 1993
Accepted 16th February 1994

